If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(2x)^2=1.96
We move all terms to the left:
x^2+(2x)^2-(1.96)=0
We add all the numbers together, and all the variables
3x^2-1.96=0
a = 3; b = 0; c = -1.96;
Δ = b2-4ac
Δ = 02-4·3·(-1.96)
Δ = 23.52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{23.52}}{2*3}=\frac{0-\sqrt{23.52}}{6} =-\frac{\sqrt{}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{23.52}}{2*3}=\frac{0+\sqrt{23.52}}{6} =\frac{\sqrt{}}{6} $
| 8x(3-2x)(4–x)=0 | | 3-(1600/x^2)=0 | | 5y^2+10y=14y-5 | | -16x^2+176x+135=0 | | 3v-8=4 | | 75+y+5=180 | | 42x(6/7x6/7)x(1/6x1/6x1/6)=x | | 950+z/2=987 | | 4/723=x | | (x÷5)+18=33 | | 5x-(-4)=4x-9 | | e/13+141=144 | | 4y-40=3y | | x/4/7=23 | | 543-z/2=432 | | 6+5x-10=4x-9 | | (84)+1p=8p | | 2(4x-5)=6x-2 | | 7+4(6)=x | | 6+5(x-2)=4x-9 | | 5Xa=-85 | | 60=18+3o | | 3x+5•(-5x/2+5)=15 | | 24+d/4=10 | | 7+4(6)=a | | 18y–6y=11y+22+y | | -2x2+4x-6=0 | | x^4(x+6)(3x+6)^2=0 | | 52=7x-116 | | 4(x+3)-6x=28 | | 3^(-10n)+2=38 | | 10^3x-1^+4=32 |